Chapitre 5 Intégration d'une fonction sur un intervalle

Exercice 1 : Montrer que les intégrales suivantes sont convergentes et calculer leur valeur.

(i)
$$\int_0^{+\infty} \frac{dt}{(t+1)(t+2)}$$
, (ii) $\int_0^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$, (iii) $\int_0^1 \sin(\ln(t)) dt$.

Exercice 2 : Pour $a \in \mathbb{R}$ avec a > 0, on considère les intégrales

$$I = \int_0^{+\infty} \cos(t)e^{-at}dt \quad \text{et} \quad J = \int_0^{+\infty} \sin(t)e^{-at}dt.$$

Montrer que les intégrales I et J sont convergentes et calculer leur valeur.

Exercice 3 : Étudier la convergence des intégrales ci-dessous.

$$(i) \int_{1}^{+\infty} \frac{(t-1)(t-5)}{t^{2}(t^{2}+1)} dt, \qquad (ii) \int_{0}^{+\infty} \frac{dt}{e^{t}-1}, \qquad (iii) \int_{0}^{+\infty} \cos\left(\frac{1}{t^{2}}\right) dt,$$

$$(iv) \int_{0}^{+\infty} \sin\left(\frac{1}{t^{2}}\right) dt, \qquad (v) \int_{0}^{+\infty} \ln(t)e^{-t} dt, \quad (vi) \int_{0}^{1} \frac{\ln(t)}{(1-t)^{3/2}} dt,$$

$$(vii) \int_{0}^{+\infty} \sin(t) \sin\left(e^{-t}\right) dt, \quad (viii) \int_{-\infty}^{+\infty} e^{-t^{2}} dt, \qquad (ix) \int_{0}^{+\infty} t \sin(t)e^{-t} dt,$$

$$(x) \int_{0}^{1} \frac{dt}{(1-t)\sqrt{t}}, \qquad (xi) \int_{-1}^{1} \frac{dt}{\sqrt{1-t^{2}}}, \qquad (xii) \int_{1}^{+\infty} e^{-\sqrt{\ln(t)}} dt.$$

Exercice 4 : Étudier la convergence des intégrales suivantes.

(i)
$$\int_0^{+\infty} \left((t+1)^{1/3} - t^{1/3} \right)^2 dt$$
, (ii) $\int_0^{+\infty} \left(t + 2 - \sqrt{t^2 + 4t + 1} \right) dt$.

Exercice 5 : Pour $a \in \mathbb{R}$, on considère l'intégrale

$$I_a = \int_0^{+\infty} \frac{t - \sin(t)}{t^a} dt.$$

Donner une condition nécessaire et suffisante sur $a \in \mathbb{R}$ pour que I_a converge.

Exercice 6: On considère l'intégrale

$$I = \int_0^{+\infty} \frac{dt}{(e^t + 1)(e^{-t} + 1)}.$$

En posant $u = e^t$, montrer que I est convergente et calculer sa valeur.

Exercice 7: On considère l'intégrale

$$I = \int_0^1 \frac{\ln(t)}{\sqrt{t}} dt.$$

En posant $u = \sqrt{t}$, montrer que I est convergente et calculer sa valeur.

Exercice 8 : On considère l'intégrale

$$I = \int_0^1 \frac{dt}{\sqrt{t(1-t)}}.$$

En posant $t = (1+\sin(x))/2$, montrer que I est convergente et calculer sa valeur.

Exercice 9 : Pour $a \in \mathbb{R}$ avec a > 0, on considère les intégrales

$$I_a = \int_0^{+\infty} \frac{dt}{(1+t^2)(1+t^a)}$$
 et $J_a = \int_0^{+\infty} \frac{t^a dt}{(1+t^2)(1+t^a)}$.

- 1. Montrer que les intégrales I_a et J_a sont convergentes.
- 2. En posant u = 1/t, montrer que $I_a = J_a$.
- 3. Calculer $I_a + J_a$. En déduire la valeur de I_a et J_a .

Exercice 10 : Pour $a \in \mathbb{R}$ avec a > 0, on considère l'intégrale

$$I_a = \int_0^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt.$$

- 1. Montrer que l'intégrale I_a est convergente pour tout $a \in \mathbb{R}_+^*$.
- 2. En posant u = 1/t, montrer que $I_1 = 0$.
- 3. En posant t = au, calculer la valeur de I_a pour $a \in \mathbb{R}_+^*$.

Exercice 11 (Intégrales d'Euler) : On considère les intégrales

$$I = \int_0^{\pi/2} \ln(\sin(t))dt \quad \text{et} \quad J = \int_0^{\pi/2} \ln(\cos(t))dt.$$

- 1. Montrer que l'intégrale I est convergente.
- 2. En utilisant le changement de variables $u = \pi/2 t$, montrer que J est convergente et que I = J.
- 3. Calculer I + J. En déduire la valeur de I et J.

Exercice 12 : On considère l'intégrale

$$I = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

- 1. En utilisant une intégration par partie, montrer que I est convergente.
- 2. Montrer que

$$\forall n \in \mathbb{N}, \quad \int_{n\pi}^{(n+1)\pi} \left| \frac{\sin(t)}{t} \right| dt \geqslant \frac{2}{(n+1)\pi}.$$

3. En déduire que $t \mapsto \sin(t)/t$ n'est pas intégrable sur $]0, +\infty[$.

Exercice 13 : Pour $n \in \mathbb{N}$ on considère l'intégrale

$$I_n = \int_0^{+\infty} t^n e^{-t} dt.$$

- 1. Montrer que l'intégrale I_n est convergente pour tout $n \in \mathbb{N}$.
- 2. Montrer que $I_{n+1} = (n+1) \cdot I_n$ pour tout $n \in \mathbb{N}$.
- 3. En déduire la valeur de I_n pour tout $n \in \mathbb{N}$.

Exercice 14 : Pour $(n,p) \in \mathbb{N}^2$ on considère l'intégrale

$$I_{n,p} = \int_0^1 t^n \ln^p(t) dt.$$

- 1. Montrer que l'intégrale $I_{n,p}$ est convergente pour tout $(n,p) \in \mathbb{N}^2$.
- 2. Montrer que l'on a la relation

$$\forall (n,p) \in \mathbb{N} \times \mathbb{N}^*, \quad I_{n,p} = -\frac{p}{n+1} \cdot I_{n,p-1}.$$

3. En déduire la valeur de $I_{n,p}$ pour tout $(n,p) \in \mathbb{N}^2$.

Exercice 15: Pour $x \in \mathbb{R}$, on note

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt.$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Étudier la monotonie de f.
- 3. Calculer f(x) + f(x+1) pour $x \in \mathbb{R}_+^*$.
- 4. Déterminer la limite de f en $+\infty$, puis un équivalent de f en $+\infty$.
- 5. Déterminer la limite de f en 0^+ , puis un équivalent de f en 0^+ .